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Abstract. Perturbation series for the electron propagator in the Schwinger Model is summed up in a
direct way by adding contributions coming from individual Feynman diagrams. The calculation, performed
entirely in momentum space, shows the complete agreement between nonperturbative and perturbative
approaches.

A long-standing question in quantum field theory is the
connection between perturbation series and exact, non-
perturbative results. It dates back to the Dyson’s paper
[1] in which the author, considering stability of a system
conditions, suggested that physical quantities and Green’s
functions should be nonanalytic in the coupling constant
g around g = 0. This in turn should result in the di-
vergence, usually factorial type, of the perturbation se-
ries. This conjecture was supported by simple models [2]
among which the most widely considered was the anhar-
monic oscillator and its field-theoretical counterpart —
the φ4 theory [3–11] as well as by other, more realistic,
field theories as QED for instance [12,13] (see [14] for fur-
ther references). In these cases the required estimations
for the nonperturbative results were often obtained with
the use of the generalized (Padé, Borel) summation meth-
ods (for a review of this approach see [14–16]). There have
also been found counterexamples, regarding the Dyson’s
observation, in which the perturbation series is not diver-
gent in spite of instability (although it may be convergent
to an incorrect result) [17–19].

In QED the nonanalyticity in the coupling constant
often manifests itself through the presence of a logarith-
mic function of the fine structure constant α in the cal-
culated quantities [20–22] and in consequence means the
divergence of coefficients in the Taylor expansion in α (in
other words divergence of Feynman diagrams) resulting
in necessity of infinite renormalisation. One can say that
this means the incorrectness of the perturbation expansion
[23–30].

Although the summability of the perturbation series
still remains an opened question, perturbation theory con-
stitutes, however, the main tool in practical calculations
giving, especially in Quantum Electrodynamics, excellent
results. It seems, therefore, valuable to sum up directly
the perturbation series, by adding contributions of the
individual Feynman graphs, in a model theory in which
the nonperturbative result is well known. Also the very
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technique for performing this summation is interesting in
itself. In this work we will concentrate on the 1+1 dimen-
sional massless QED known as the Schwinger Model [31].
In other two-dimensional models like φ4, Yukawa theory
or QCD various and model dependent behaviours of the
perturbation series have been established [32–34]

The focus will be put here on the electron propagator
for which the explicit nonperturbative formula in coordi-
nate space was found [31] (up to the final p-integration)

S(x) = S0(x) exp
[−ie2β(x)

]
, (1)

S0 being the free propagator. Function β is defined by

β(x) = (2)


i
2e2

[
− iπ

2 + γE + ln
√

e2x2/4π + iπ
2 H

(1)
0 (
√

e2x2/π)
]

x timelike

i
2e2

[
γE + ln

√−e2x2/4π + K0(
√−e2x2/π)

]
x spacelike

.

Symbol γE denotes here the Euler constant and functions
H

(1)
0 and K0 are Hankel function of the first kind, and

Basset function respectively [35].
The propagator S was also considered perturbatively

[36,37] but the calculations were led in coordinate space.
In that case, thanks to the well known factorization, the
perturbation series is either turned into a differential equa-
tion or can be shown to be the expansion of the expo-
nent function. In real four-dimensional QFT, however, one
most often has to do with Feynman diagrams in momen-
tum space, where S-matrix elements have their natural
form and the analytical properties of the Green’s functions
(poles, cuts) are closely related to the physical quantities.
We therefore find it more instructive to sum up the per-
turbation series entirely in momentum space. Up to our
knowledge no such direct summation has, in this model,
been performed.

One can expect that in this case the perturbation series
should be convergent and give, as the sum, the correct
result since:
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Fig. 1. Diagrams contributing to the photon propagator

1. no infinite renormalisation has to be performed in the
model

2. if one reverses the sign of e2, as suggested by Dyson, no
collapse should arise since in two dimensions the po-
tential between equal sign charges would be bounded
from below

3. the appearance of a logarithm in (2) is only apparent as
the Hankel and Basset functions for small arguments
— which means small values of the coupling constant
(or small distances which is equivalent here as the scale
in the theory is imposed by e) — behave like

H
(1)
0 (z) ≈ 2i

π
(lnx/2 + γE) + 1 + analytic terms , (3)

and similarly for the K0 function

K0(z) ≈ − lnx/2 − γE + analytic terms , (4)

and nonanalytic functions cancel each other. The full
propagator turns out to be the free one in this limit
(which corresponds also to the UV limit).

The Schwinger Model may be characterized by the La-
grangian density

L(x) = Ψ(x) [iγµ∂µ − eAµ(x)γµ]Ψ(x)

−1
4
Fµν(x)Fµν(x) − λ

2
[∂µAµ(x)]2 . (5)

The parameter λ is here a gauge fixing one, and later will
be set to infinity which corresponds to the choice of the
Landau gauge.

In order to sum the perturbation series for the electron
propagator one first has to perform a presummation of
vacuum polarization diagrams. It is well known that this
presummation is trivial since in this simple model fermion
loops with more than two vertices do not contribute and
only diagrams of Fig. 1 should be taken into account. It
may be easily checked by an explicit calculation that for
a single loop one gets

Πµν(k) = ie2
∫

d2p

(2π)2
Tr
(

γµ 1
6p + iε

γν 1
6p+ 6k + iε

)

=
e2

π

(
gµν − kµkν

k2

)
, (6)

so that the whole series of Fig. 1 may be easily summed
up to give the massive propagator

Dµν(k) =
(

−gµν +
kµkν

k2

)
1

µ2 − k2 − 1
λ

kµkν

(k2)2
, (7)
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Fig. 2. The attachment of the (n + 1)-st photon to S(n)(p)

with µ2 = e2/π. This is the famous Schwinger boson.
Now we have to consider electron self-energy insertions

assuming already that we have to do with massive pho-
tons. This summation is not trivial and we will perform
it in detail. Let us represent the full propagator S, in mo-
mentum space, as the sum

S(p) =
∞∑

n=0

S(n)(p) , (8)

where S(0) is of course the same as Fourier transformed
S0(x) of (1), and the summation runs over the number of
photons attached to the electron line. To find the recurrent
relation between S(n)’s we take the n-th term of the sum
(8) and attach to it the (n + 1)-st photon. This situation
is schematically represented on Fig. 2. When the photon
is attached the additional propagator Dµν(k) appears in
the internal line. It may easily be observed that this part
of Dµν that bears metric tensor gµν does not contribute
since the corresponding expression has the structure

γµγα1γα2 · ... · γα2k+1γµ (9)

and an odd number of gamma matrices may, in two di-
mensions, always be reduced to only one for which one
can check that γµγαγµ = 0. For the gamma matrices we
use in this work the following convention

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
,

γ5 = γ0γ1 =
(

1 0
0 −1

)
,

and for the metric tensor: g00 = −g11 = 1.
Thanks to this observation we may now consider only

that part of Dµν(k) which is proportional to kµkν

− kµkν

(k2 − κ2)(k2 − µ2)
, (10)

where we have put λ → ∞, and introduced fictious mass
κ2 in denominator to avoid infinities at intermediate steps
when we separate the k-integral into pieces. Let us now
imagine that we first attach to the object S(n)(p) only one
leg of the external photon of the (incoming) momentum k.
This means that we consider the vertex in the n-th order:
[S(p + k)Γµ(k, p)S(p)](n). But our (simplified) propagator
(10) provides also kµ in this vertex. From the very con-
struction of the theory and its gauge symmetry it follows



T. Radożycki: Summing up the perturbation series in the Schwinger Model 551

that in each order the Ward identity is separately satisfied
which may also be checked by a direct computation

kµ [S(p + k)Γµ(k, p)S(p)](n)

= S(n)(p) − S(n)(p + k) . (11)

If we now attach to the above object the second photon
leg (now of momentum −k) we obtain

[S(p − k)Γ ν(−k, p)S(p)

−S(p)Γ ν(−k, p + k)S(p + k)](n)
. (12)

The second leg, according to (10), also bears kν so we can
use again the Ward identity getting

kν [S(p − k)Γ ν(−k, p)S(p)

−S(p)Γ ν(−k, p + k)S(p + k)](n) (13)

= S(n)(p − k) − S(n)(p) + S(n)(p + k) − S(n)(p) .

Now we are in a position to state our recurrence equation
between S(n)’s

S(n+1)(p) = −(−ie)2
i

2(n + 1)

×
∫

d2k

(2π)2
1

(k2 − µ2 + iε)(k2 − κ2 + iε)

×
[
2S(n)(p − k) − 2S(n)(p)

]
, (14)

where in one of the terms in (14) we have changed k →
−k under the integral. The combinatorical factor 1

2(n+1)
comes from the fact that our construction counts each dia-
gram 2(n+1) times (n+1 possibilities of the choice which
photon we treat as the (n+1)-st one and two possibilities
of interchanging the attached legs). Finally we can write
this equation in the form [38]

S(n+1)(p) =
ie2

n + 1

[
−I(µ2, κ2)S(n)(p) +

∫
d2k

(2π)2
(15)

× 1
(k2 − µ2 + iε)(k2 − κ2 + iε)

S(n)(p − k)
]

,

where for convenience symbol I has been introduced to
denote

I(µ2, κ2) ≡
∫

d2k

(2π)2
1

(k2 − µ2 + iε)(k2 − κ2 + iε)

=
i

4π
ln

µ2/κ2

µ2 − κ2 . (16)

One could observe in this point that the passing to the
coordinate space would simplify further calculations since
the convolution integral on the right hand side of (15)
would change into product and S(n) would turn out to
be the n-th term of the expansion of the exponent func-
tion which allows for an easy summation. As motivated in
the introduction we prefer to proceed in momentum space

which may be an earnest (naturally strongly simplified) of
what one can have to do with in perturbative QED4.

Repeating the recurrence we are able to write the gen-
eral formula for the n-th term

S(n)(p) =
(ie2)n

n!

n∑
k=0

n!
k!(n − k)!

[−I(µ2, κ2)](n−k)

×
∫

d2k1d
2k2 · ... · d2kk

(2π)2k

· 1
(k2

1 − µ2 + iε)(k2
1 − κ2 + iε)

· 1
(k2

2 − µ2 + iε)(k2
2 − κ2 + iε)

· ...

· 1
(k2

k − µ2 + iε)(k2
k − κ2 + iε)

·

S(0)(p − k1 − k2 − ... − kk) . (17)

Considering the summation in (8) together with that of
formula (17) we see that the double sum has to be per-
formed. Using obvious symbolic notation we can simplify
it in the following way

∞∑
n=0

xn

n!

n∑
k=0

n!
k!(n − k)!

ak

=
∞∑

k=0

ak

k!

∞∑
n=k

xn

(n − k)!
=

∞∑
k=0

akxk

k!

∞∑
n=k

xn−k

(n − k)!

=
∞∑

k=0

akxk

k!

∞∑
n=0

xn

n!
= ex

∞∑
k=0

akxk

k!
. (18)

Applying this to our formula for S(p) we get

S(p) = exp
[−ie2I(µ2, κ2)

] ∞∑
n=0

(ie2)n

n!

×
∫

d2k1d
2k2 · ... · d2kn

(2π)2n

· 1
(k2

1 − µ2 + iε)(k2
1 − κ2 + iε)

· 1
(k2

2 − µ2 + iε)(k2
2 − κ2 + iε)

· ...

· 1
(k2

n − µ2 + iε)(k2
n − κ2 + iε)

·S(0)(p − k1 − k2 − ... − kn) . (19)

We now have to make use of the fact that S(0)(p) is a free
massless propagator: S(0)(p) = γµpµ/p2, pass to the Eu-
clidean space, and replace denominators 1/D2 with

∫∞
0 dt

exp[−tD2]. If we additionally substitute for pµ −kµ
1 − ...−

kµ
n the appropriate derivative over pµ we can write

S(p)E =
1
2

exp
[−ie2I(µ2, κ2)

](
γµ

∂

∂pµ

)
E

×
∞∑

n=0

(−e2)n

n!
1

(µ2 − κ2)n

∫ ∞

0

dτ

τ

∫ ∞

0
dt1dt2 · ... · dtn
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·
∫

d2
Ek1d

2
Ek2 · ... · d2

Ekn

(2π)2n

n∑
i=0

n!
i!(n − i)!

(−1)i

× exp
[− t1(k2

1 + µ2) − t2(k2
2 + µ2) − ...

− ti(k2
i + µ2) − ti+1(k2

i+1 + κ2) − ...

− tn(k2
n + κ2) − τ(p − k1 − k2 − ... − kn)2

]
. (20)

In this formula the coefficient 1/(µ2 − κ2)n arises from
expanding the products of denominators 1/[(k2

i +µ2)(k2
i +

κ2)] into sums. Now we calculate the multiple integral∫
d2

Ek1d
2
Ek2 · ... · d2

Ekn

(2π)2n
exp

[−t1k
2
1 − t2k

2
2 − ... − tnk2

n

−τ(p − k1 − k2 − ... − kn)2
]

=
1

(4π)n

1
(1/τ + 1/t1 + ... + 1/tn) τt1 · ... · tn

× exp
[−p2/ (1/τ + 1/t1 + ... + 1/tn)

]
. (21)

After having taken in (20) the derivative over pµ the inte-
gral over τ may be easily performed if we observe that

1
(1/τ + x)2 τ2

exp
[
− p2

1/τ + x

]
= − 1

p2

d

dτ
exp

[
− p2

1/τ + x

]

and one limit contributes 1
p2 and the other − 1

p2 e−p2/x. In
that way we obtain for S(p)E

S(p)E = exp
[−ie2I(µ2, κ2)

] (γµpµ)E

p2

×
∞∑

n=0

1
n!

( −e2

4π(µ2 − κ2)

)n ∫ ∞

0
dt1dt2 · ... · dtn ·

exp
[−κ2(t1 + t2 + ... + tn)

]
×
(

exp
[
− p2

1/t1 + 1/t2 + ... + 1/tn

]
− 1
)

×
n∑

i=0

n!
i!(n − i)!

(−1)i ·

· exp
[−(µ2 − κ2)(t1 + t2 + ... + ti)

]
. (22)

Now let us consider the expression under the second sum

n∑
i=0

n!
i!(n − i)!

(−1)if(t1)f(t2) · ... · f(ti) .

Since it will be integrated in (22) over all ti’s with a sym-
metric function of its arguments one can obviously replace
it with

[1 − f(t1)] · [1 − f(t2)] · ... · [1 − f(tn)]

and that, in turn, leads to

S(p)E = exp
[−ie2I(µ2, κ2)

] (γµpµ)E

p2

×
∞∑

n=0

1
n!

( −e2

4π(µ2 − κ2)

)n ∫ ∞

0
dt1dt2 · ... · dtn

×e−κ2t1 − e−µ2t1

t1
· e−κ2t2 − e−µ2t2

t2

·... · e−κ2tn − e−µ2tn

tn
·

·
(

exp
[
− p2

1/t1 + 1/t2 + ... + 1/tn

]
− 1
)

. (23)

Making now use of the identity which is valid for a > 0
[39]

1 − e−1/4a =
∫ ∞

0
dxJ1(x)e−ax2

,

where J1 is the Bessel function, together with the substi-
tution:

1
4a

=
p2(

1
t1

+ 1
t2

+ ... + 1
t1

) ,

we note that we are now in a position to perform all ti
integrations according to

∫ ∞

0
dt

e−κ2t − e−µ2t

t
e−x2/4p2t

= 2

[
K0

(
κx√
p2

)
− K0

(
µx√
p2

)]
.

Observing that in (23) we have in fact the expansion of
the exponent function we can write down the following
formula

S(p)E (24)

= − exp
[−ie2I(µ2, κ2)

] (γµpµ)E

p2

∫ ∞

0
dxJ1(x)

× exp

{
− e2

2π(µ2 − κ2)

[
K0

(
κx√
p2

)
− K0

(
µx√
p2

)]}
.

The quantity κ was introduced to the calculations only
temporarily in order to regularize certain integrals on in-
termediate steps. Now, in the formula (24), where all pieces
are collected together, we may get rid of it, setting κ → 0,
if we make use of the expansion of Basset function for
small arguments: K0(x) ≈ − ln(x/2) − γE . Recalling that
µ2 = e2/π we finally get

S(p)E = − (6p)E

(p2)5/4 eγE/2
(

e

2
√

π

)1/2

×
∫ ∞

0
dxx1/2J1(x) exp

[
1
2
K0

(
ex/
√

πp2
)]

. (25)

If one takes into account the asymptotic approximation of
the function K0 one can easily obtain the known [40] in-
frared behaviour of the electron propagator (in Minkowski
space): S(p) ≈ e1/2

25/2π5/4 exp
(

γE

2

) [
Γ
( 1

4

)]2 6p
(−p2)5/4 .

Then we already have the Euclidean p representation
of S which, in fact, terminates the caculations, but in or-
der to compare the result with (1) and (2) we also need
the coordinate space representation. The lacking Fourier
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transform may, however, be performed in a straightfor-
ward way described below. After rescaling x → x·p, where
p =

√
p2, replacing pµ/p with ∂/∂pµ, which acts on the

function of p only, and noticing that J1(x) = −dJ0(x)/dx
one gets

S(p)E =
(

γµ
∂

∂pµ

)
E

eγE/2
(

e

2
√

π

)1/2

×
∫ ∞

0
dxx−1/2J0(xp) exp

[
1
2
K0
(
ex/

√
π
)]

. (26)

The following representation for the Bessel function J0(x)

J0(xp) =
1
2π

∫ 2π

0
eipx sin(φ−α)dφ

can now be used, where we choose the angle α such that:
cos α = p4/p, and sinα = p1/p. After this substitution our
formula (26) contains two integrations: over x and φ and
they may be replaced with the integration over Euclidean
two-space if we identify

x4 = x sinφ , x1 = x cos φ .

Taking into account that the appropriate Jacobian equals
1/x and passing to Minkowski space-time we can finally
write down

S(p) = − 1
2π

eγE/2
∫

d2xeipx 6x
x2 − iε

(27)

× exp
[
1
2

ln
√

−e2x2/4π +
1
2
K0

(√
−e2x2/π

)]
,

which entirely agrees with the formulae (1) and (2) in the
case when x is spacelike. For timelike x we have to perform
in (25) a rotation in the complex plane of p2 obtaining the
first formula of (2). This proves the convergence and cor-
rectness of the perturbation series in the Schwinger Model
(at least for the electron propagator).

Acknowledgements. The author would like to thank to Profes-
sor J. Namys lowski for the interesting discussions.
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